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perpendiculars to subspaces.

Definition. Given a proper subspace M of the normed |inear space (X,|| - ||), a nonzero

vector x € X is perpendicular to M if

dOM) =inf{l Ix=y |||y € m} = HIx]].

X-y

o

M y

Figure. The idea of “perpendicular” defined using norms.

Theorem 4. Riesz’s Lemma.

Given a closed, proper subspace M of a normed linear space (X,|| - ||) and given & > 0,

there is a unit vector x € X such that d(x,M)>1-¢.

41
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Abstract:

The Polya enumeration theorem, also
known as the Redfield—Polya theorem
and Podlya counting, isa theorem iIn
combinatorics that both follows from and
ultimately generalizes Burnside's lemma
on the number of orbits of a group action
on a set. The theorem was first published
by J. Howard Redfield in 1927.
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Polya’s Counting Theory

1 Introduction

Pglya theory 1s, Unll.ke most (_)f high- school combinatorics, not a bag of
tricks that are situation- specific. It deals with questions where clearly
understanding the set that is to be counted is the main difficulty.

An example of this is when we are trying to find the number of nationalities
represented in a group of people: having counted the first Indian, we must
ignore the other Indians as the counting proceeds.

In this case certain groups of people were related by nationality; however,
the problems of Polya theory involve relations of symmetry operating
among elements (people), and the crux of their solution is to understand how
symmetry changes the relationships between these elements.

In what follows we will consider symmetry problems from elementary
combinatorics, such as necklaces and chessboards, as well as solid geometry
and chemistry, and we will hint at the number theoretic applications that
abound in this field. The full scope of Polya theory is, of course, far greater,
and is visible in graph theory and higher algebra as well.

mplified chessboard example that, although

Remark 1.1 We begin with a si
kly generalises to problems that beg for

easily solved by brute force, quic
more systematic methods of solution.

Example 1.2 Consider a2 x 2 board whose squares are coloured either in
red(r) or in black(b). We must find the number of different boards.
Elementary counting suggests that since each square can have one of two
colours, there are 24= 16 possible arrangements. A lot, however, (Zlepends on
what we mean by different’. The consensus among most people 1s th.at two
boards are equivalent if one can be obtained from the other by a rotation of

1



some multiple of 90 anticlockwise. Assuming this, we find the following
arrangements: a) 4 red squares b) 3 red, 1 black ¢) 2 red, 2 black (there are 2
possiblities here, where similar squares are on the same half or the same
diagonal).

Thus the total number of non-equivalent boards is 2:(1+1)+2 = 6, since the
two remaining cases are (a) and (b) with the colours interchanged. The reader
will appreciate the intrinsic difficulty of the problem immediately upon
replacing the *2x2 * even with *3x3 *, and certainly with any greater number.
Problems of a similar nature abound in elementary settings: The number of
necklaces of n beads, with a choice of m colours, where necklaces with
rotational symmetry are equivalent; the number of colourings of

the vertices of a cube or tetrahedron in m colours, equivalent up to rotation;
and several others that will be returned to.

2 Abstracting the problem

In each case mentioned above, there is an assignment of colours to squares,
beads or vertices- a function from a domain to the set of colours. Elementary
counting gives us the cardinality of the set of all such functions R”, where D
is the domain and R, the range. However, some functions are *equivalent’ (the
elucidation of ’equivalence’ being central to our study and done presently)
and thus the real problem is to determine the number of egivalence classes of
functions on R”.

So, when are two functions equivalent? Returning to our examples, we see
that equivalence was defined by the property that one arrangement (function)
could be obtained from another by an operation on the elements of the domain.
What sort of operation? Clearly, any such operation permutes the elements
among themselves, otherwise the power set is ill defined. Furthermore, as in
our example, if we can speak of rotating a chessboard by multiples of 90, we
must surely include rotations by zero (the identity operation) and negative
multiples (inverses). We see that the set of operations possess a group
structure; and, as our discussion will show, it is sufficiently general to consider
that the operations form a permutation group.



We will formalize the concept of equivalence of functions. Let G be a

permutation group acting on a set D. There exists a set R and the set R”, the
set of all functions from D to R.

Definition 2.1 Two functions f,g € RP are equivalent if there exisis a
permutation € G such that for all d € D fd) = g(z(d)). Also, for every & €
G, define e RP — RP such that edf) = g iff fand g are equivalent. exis well
defined. For, if for some i, Az7'(i) = g(i), then setting i = m(d),
which is possible as 7 is a permutation, we get Ad) = g(z(d)).

Further, e@) 1s injective. If ex(f) = e«(h) = g, then fd) = h(d) for all d € D
and 5o f= h. This, together with the fact that the domain and range have equal
cardinality, imply that e, is also surjective and so is a permutation on Jo

The equivalence class of fis called a pattern. Thus, the set of chessboards
that form a pattern can be obtained from each other by rotation. Our objective
is to enumerate the patterns on R”.

3 A Partial Answer- Burnside’s Lemma

The full machinery that we seek to employ is not always necessary, at least
when we set ourselves the limited problem of counting the number of
patterns without asking for any further information about their nature or
their constituent functions.

Consider a group G acting on a set S . For every g € G, let S¥ denote the
subset of S fixed by g. Also for every s € S define the stabilizer G;of s, the
subgroup of G (this is easily proved to be a subgroup) which fixes s, so that
gs = s for all g € G;. Now we find the cardinality of the set (g,s) : gs = s.

Fixing a g and then summing over G gives P e |S¥). Alternatively, fixing
an s and summing over S yields *yes|Gy|. The latter sum can be simplified

with the Orbit- Stabilizer Theorem. Indeed,
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where N is the number of orbits of S and |0, is the order of the orbit of s.
This gives an expression for N:

Lemma 3.1 (Burnside’s Lemma) Given q group G acting on a set S, the
number of orbits N due to this action is given by

1 9
NerTZ'S |

9€G

Remark 3.2 It is rather interesting to find that this is just as often often
referred to as the not- Burnside Lemma in recognition of its prior discovery
independently by Cauchy and Frobenius.

We immediately apply Burnside’s Lemma to Example 1.2 letting G be the
group Ci, the cyclic group of rotations by multiples of 90°. We number the
squares as quadrants. Letting S? denote the set of coloured boards (functions)
which remain unchanged upon rotation by 6, we see that

a)  Any board is fixed by rotation through 6 = 0. There are 16 such
boards and so [S°= 16.

b)  A90°rotation sends 1102,2t03,3 to 4, 4 to 1. If the board is
unchanged, the colour of square 1 should be the same as that of 2, and

similarly for all pairs. We thus have a monochromatic board, giving |S*| =
2(red or black).

Symmetry gives [S?7| = 2 as well.
0) A 180°rotation is a reflection about the x- axis and sends 1 to 4, 2 to
3. Arguing as before, we get |S'%| = 22=4.

1

Burnside’s Lemma now gives e 416 +2 + 2 + 4) = 6, which we had
obtained previously.

However, there are some clear limitations to the use of this lemma:
computing fixed points of sets under group action is often tedious and does
not allow us to solve problems such as the following:

Problem: Find the number of different cubes that can be obtained by
colouring its vertices in 2, 3, m colours. Two cubes are considered
equivalent under rotational symmetry.



4 A Better Understanding of Equivalent Functions; The Cycle Index

We need a be.tter understanding of the properties of a function that is fixed
by a permutation in G. A key insight is the following lemma, which restricts
the values of the functions that can be fixed by a permutation 7 € G.

We will use the fact that under action of 7,we obtain a permutation of the
elements of the domain which can be decomposed into cycles. If there are b;
cycles of length 7, the permutation is said to have cycle type (b,b,...,by).

Consider one of the cycles of length j, C = (avay,..,a)). We have the
following lemma:

Lemma 4.1If 7 fixes a function fon RP then fis constant for all a; € C.

Proof: The above is equivalent to saying that e,(f) = fand so for all d €
DAld) =fim(d)). Butif d is in C, ie. d = g, for some i, then fla) =fn(a)) =
flax) and so fis constant within C.

In the language of example 1.2, if upon rotation by 90°, which generates a
single cycle of length 4 among the four squares, if we get an unchanged
board then for all squares in the cycle (basically, all 4 squares), the value of
the function (the colour assigned to the square) must be constant for all
elements of the cycle (squares).

Upon rotation by 180" we get two cycles, (14) and (23). So within each
cycle, any assignment must be constant over the cycle. How this is to be
used to count the patterns will be deferred until we have a scheme to
represent assignments suitably.

Moreover, in order to use our knowlegde of Lemma 4.1 we will need
some sort of bookkeeping device that stores information about the cycles
generated separately by all the elements of G. The ’device’ most suitable for
computation is a polynomial whose each term describes one element of G,
and so we define the following:

Definition 4.2 (Cycle Index) For each a € G with |G| = n define a monomial
a'z..ob where the x; are arbitrary variables and b;is the number of cycles of
length i in a. Then the cycle index of G in its action on set S is defined as

1 ;
Polny oot o= |—C-,’_| Z(monomza[(a))
aEG (



Since calculating the cycle index of our groups is fundamental to what is

to come, it is worthwhile to perform the calculation for some well- known
objects.

Example 4.3 Now let G be the group of rotations (rotational symmetries) of
a cube ABCDEFGH. The total number of symmetries, |G|, is 24. Indeed, a
vertex can be rotated to any other face under the action of G, so its orbit has
order 8. Also, its stabiliser is the group of rotations by multiples of 120°
about the axis passing through the vertex and the centre of the cube, and has
order 3. The Orbit-Stabilizer Theorem now gives |G| =8 * 3 =24. The
rotations in G can be classified as follows:

A D

a) Rotations fixing vertices: A rotation fixing, say, 4 and G can either
send E— B — D — E (120" rotation) or can send £E— D — B — E (240°
rotation). We recognize that these two rotations, along with the identity,
constitute the stabilizer of A and G, mentioned previously. Thus, for each
such rotation, there are two 1-cycles and two 3-cycles, to which we
assoociate the monomialziz3, There are two rotations per pair of opposite
vertices and 4 such pairs in the cube, giving a factor of 8 to the above
monomial.

b) Rotations fixing edges: Suppose we rotate the cube by 180" about the
axis formed by joining the midpoints of AB and GH. Then, we have the
cycles (AB), (GH), (DF), (CE) and the associated monomial #3. There are 6

6



axes, one for each pair of opposite edges.

c)Rotations fixing faces: Here the axis is through the centre of a face and
perpendicular to it. For rotations by 90" or 270", the vertices that bound these
faces are permuted among themselves in two 4-cycles, ie. 2 - 71, For a 180°-
rotation, there are four 2- cycles formed by vertices on the same face,

diagonal to each other. We can choose the axis in 3 ways. This gives us the
cycle index of G:

8 pily Y3 g
G (D Tk, T ) = ) + 8‘”1132';‘ 9z5 + 62

where the first term is the identity permutation monomial.

Example 4.4 The purpose of this example is to show that in addition to
the degree, even the coefficients of the cycle index can change depending on
which element of the cube we choose as our set. Let us perform the same
calculation for the faces of the cube.

a) As above, for a 120’ rotation the cycles are (A)(G)(EBD)(FCH). So
ABCD — ADHE — AEFB — ABCD and similarly for the other three faces.
This gives the term 82,

b) Using the cycle decomposition for vertices, we have ABCD —
BAEFEADHE — BFGC,DCGH — FEHG with the associated term 673,

¢ For 90" and 270" rotations, two faces are fixed and the others go
around in a 4-cycle. For 180", the 4-cycle breaks into two 2-cycles. The

contributionto the cycle index reads 6aiz: + 32125,
0 2 2 g J I8 QA2 md
_ aj + 8aj + 63 + 6124 + Jaizs

Thus, [PG(CBh-sz---yIn) = 24 ]

Example 4.5 We shall try to find the cycle index of the cyclic group C, of
rotations acting on a regular n- gon- a situation encountered in the necklace

problem outlined along with Example 1.2. First we observe that this group is



isomorphic to the additive group Zn of inte
[n]= (1.2,...0).

Next, We se€ t!l'fit the difference between consecutive numbers in a cycle is the
same by definition, and for this difference d, the length of the cycle is the least
number & such that kd =0 (mod n). For a fixed d, this  is unique and so the
length of all cycles is the same. Thus, if there is a cycle of length &, then there
are n/k cycles, partitioning Zn. Of course kin by this argument. ,

gers modulo n, acting on the set

Now, we must find the number of values of 4 that act on [»] in this manner,

for a fixed k. For the above congruence to hold clearly’ = B foromal <k.

Notice that with this value of d, the number" ~ (.5 s also a solution to the

congruence, because the product A’ is still a multiple of n. Since £ is the
Jeast solution for-ﬁxed d we must have (7, k) =1 and since ¢ < k there are
exactly g(k)solutions, ie. p(k) permutations with cycle length £.

wk
These contribute the term p(k)x;to the cycle index. Thus, we finally have
our expression:

L Ek]n ¢(k)IZ/I‘

PG(I1,121~-azn) 7

Corollary Since the sum of coefficients in the cycle index is by
definition 1, we obtain *y, p(k) = n.

5 What do we really want now? Weight for it . ..

To summarize what we have done so far, we have restated the problem of
assigning properties to sets as a problem of finding the number of patterns,
or classes of functions within a power set, some of which are equivalent
under the action of a permutation group. The number of patterns is closely
related to the number of functions that are fixed by the permutations of the
group. Burnside’s Lemma is the clearest example of this. Furthermore, if a
permutation fixes a function we have proved it must be constant over its
individual cycles. All the information we could possibly need about cycles is
contained in the cycle index, which is a lot easier to compute than the fixed

points in Burnside’s Lemma. So we have the tools we need to find the
8




number of patterns in a group. But with th
our disposal, a little more effort can actual
uestion: What is the exact nature of the p
in Example 1.2 have equal numbers of red and black? How many cubes
exist whe.re exactly three vertices are coloured red, al.ld the rest blue?
The new idea we present is motivated by the need fo distinguish between

different elements of the range R. We define for each 7 € R a weight function
w: R — R Also, we define the following;

¢ amount of machinery we have at
ly allow us to solve a much bigger
atterns? How many of the squares

Definition 5.1The weight of a function £ D — R is given by

w(f) = fd).
deD

Also, the total weight of R is w(R) =P,z w(r).

For example, if there are six mathematicians to each of whom one problem
from a selection of hard problems is assigned, if three are given the
Goldbach Conjecture, two the P/NP problem and one the Riemann

Hypothesis, the weight assignment (using an obvious convention) for this
function would be g’p’r. Our definition of weights has the following very
desirable property:

Proposition 5.2 Equivalent functions have equal weight. Proof: Suppose
e,(f) = g. Then for all d € D,f(d) = g(z(d)) and thus

w(f) = " d)
deD

='fr'a
deD

=" g(d)
deD

=w(g)




This allows us to make the following definitions:

Definitions S.3For each pattern F, define w( F)=
proposition 5.2, this function is well-defined.
Now define the pattern inventory, which is given by

pL=*w(F)
F

w(f) for some f € F. By

where the sum covers all patterns in RP.

At last we have clearly defined what we were looking for: The pattern
inventory contains by means of its weighted terms all the information about
the action of the group that we could possibl
which we calculate when we have considered al] patterns to be equally
important, is indeed obtained by setting all weights equal to unity.

Knowledge of the pattern inventory is, in principle at least, the solution to
all the problems we have set ourselves hitherto.

To see this, we consider the following example:

y need. The number of patterns,

Example 5.4 We are to place marbles into a container with three holes
arranged in the form of an equilateral triangle. There are 6 marbles in total.

We must list all possible arrangements, assuming that the dihedral group Ds
acts on the triangle.

Here, if we assign weight a;to a group of i marbles in the same hole, the
possible arrangements are given in the pattern inventory

PlI. =g+ asa; + amf + aqay + ag + azaza; + ug'
We leave it to the reader to verify that the pattern inventory for Example 1.2,
assuming that red and black are weighted with r and & respectively, is PL =

P+ Pb+2rb+ rb + b,

This example reminds us of something very important:

Remark Different patterns may have the same weight.

10




We now have everyt].]mg We need to find the pattern inventory purely by
examining group actions on the gjven domain. There is a final link. the

relatio_n betwe'en a furllction constant over given subsets of the domain and
its weight, which is given by the following lemma:

Lemma 5.5 Fora functionf :D>RletD= 5:D;such that f1s constant over

any given Di. Then the total weight of all such functions fis
W=YXwr)|Dil) i rer

Proof: Any such function has the weightw'lD tiglPal_pplPl | and so belongs to

the expression ¥. Conversely, any term in W corresponds to the unique
function f with fid) = wfor all 4 € 8}
Thus, if our six mathematicians (see def 5.1) asked for a reallocation of
problems but demanded that their teammates remain unchanged, even if two
teams got the same problem, the possible weights of functions in this case
would be terms from the product [ (g°+ p3+ PN@+P+ (g +p+r)]

where it is ensured that any assignment remains constant over a given team,
as was required.

6 Polya’s Fundamental theorem on Enumeration

Theorem 6.1 (Polya’s fundamental enumeration theorem) The pattern
inventory of a set of functions R” acted upon by a permutation group G is
obtained by replacing in the cycle index of the group, the variable x; with the
sum "eg w(r)'. That is,

PL=P(*w(r), *w(r)?..., *w(r)").
r€ER reR reR

11




proof:Some patterns have equal weight W,. Let there be m
. . . ‘

The set of functions of weight 1, s 5 union of disjoint subs

U:';'l K,

Now G acts on T producing m, orbits, so B

1
= @levl

G

such patterns.
ets of R T=

urnside’s Lemma gives

where S7is the subset of T fixed by 7.
The pattern inventory is therefore given by

Pl =Zm.‘W.'

-G 2 LIS

7€G i

- %l 3 (Wyia(m)|

7eG 5

where Wjix(w) is the total weight of all functions fixed by 7.

Choose a 7 € G with cycle type (b, b,..., b,). Any function in S”, we have

seen, is constant over the cycles of z, which together partition D. Thus,
Lemma 5.5 gives

PI= |—(1;—| Y I wiry)”

#€EG j TrER

This is because we collect the similar expressions for the b, cycles of equal
length j. Comparing this with the definition

6(Z4,2) ., ) = |_é_| % Hzg,

7EG j

the theorem is proved.

Corollary - The number of patterns is given by Pg(|R|,|R|,...,|R]).
7 Applications
Example 7.1 We return to the problem of vertex colouring of a cube in

two colours, red and blue. The pattern inventory, by Polya’s theorem, is
(r+6)* +8(r + b)*(r® + b*) + 9(r2 + b*)* + 6(r* +b')?
24

12




2 The number of patterns
2% 48,2292 4 0,24 4 .92
= Cf 1O 462

24
=23.

) The number of patterns of 4 vertices
coeﬁflmentof r*b*in the PL.

8
L (4)+8'2'2+9~6+(5.2
24

each coloured red and blue =

=T.

Example 7.2 How many necklaces of beads can be made in m colours, if

the group acting on them is the cyclic group C,2 We saw that the cycle index
was given by

PG(x1,x2,...xn) = Xo(k)xn/kk
Jll

and thus the number of necklaces, by Polya’s theorem, is

N =*p(k)ymn/k.
k|n

Remark: There is an elegant solution to the above problem by means of the
Mobius Inversion Formula. The necklace must, as we showed, have cycle
length k{n, and if the d repetitions due to permutations within each cycle are
considered we have m" = *kM(k)

kin

where M(k) is the number of patterns with cycle length £. It can be proved
that M(k) is multiplicative and thus the Inversion Formula can be applied,

giving us the same answer after a lengthy computation which we will avoid
here.

13



gxample 7.3 We consider the action of t
square chessboard where 7 is even, For t
ntroduce a ’dumm?/’ Square at the orjgij
side 1 so thata lattice point is at their
length 1. We first obtain the cycle inde

he dihedral group Dyon an n x n
he purpose of calculation we
1 and allow each unit square to have

entre. The sides of the square have
X of the board,

T T s
/\T—\_‘

II I

III IV

2)  Rotations by 90°or 270": Each 1x1 square belongs to a subgroup of
four squares under these motions and so for every four squares a 4-cycle is
generated thus giving a monomial of 2%z ”*. The 180" rotation givest; .

b)  Here we assume that the motion of any unit square corresponds to the
motionof the lattice point within the square. Consider the reflection about
the xaxis followed by rotation through 90" or 270", To analyse this we use
the representation of points on R as a 2-D coloumn vector and recall that
the motions of D, can be represented using orthogonal matrices 4 with 42=
1. Thus any square will be part of a 2- cycle or less. It is now sufficient to
find the number of fixed points.

Rotation by 90" and reflection about the x- axis have the associated matrices

0-1\ /10 01 z
( 10 ) (0 = 1); and their product is (1 0) which operates on the vector ('J) to
y
give (r) Thus, under this operation, only the # squares along one diagonal

are stabilized and the rest belong to 2- cycles. The monomial is the same for
the cas of reflection and then 270" rotation, so we finally get the term

14




(=72 The remainin ion ig
. a8 : g reflectior : 14 a8
Al R 118 Just reflection about the y- axis with

mn
the term®2 ;
Our cyele index, then, is
o n? y
ol + 2z} My 3.‘1;;7/2 1 21,1.:'_(2,.2_")/2
8

and replacing the variables with 2 gives the answer

The reader is invited to perfom? the similar calculation for odd  and see if a
cJosed form can be obtained without separating the two cases
g Applications to Chemistry i

The fact thgt molecule§ have_higher probabilities of assuming symmetrical
configurations makes 1-t possible to obtain valuable insights via group theory.
All the problems we discuss are related to the counting of isomers. The first

example is from my own chemistry class, and one can see that it can turn
messy without group theoretic ideas.

Example 8.1 A coordination complex is a compound formed when a
positively charged transition metal atom attracts negatively charged ligands
in a solution. The number of ligands that coordinate with it determine the
geometry of the complex.
Thus, six ligands form an octahedral complex written as M(abcdef) where M
is the metal and the rest are ligands, some of which may be equal to each
other. We are to find the number of isomers where a,b,¢,d,e,f are all distinct.
To solve this, we note that the octahedron is a dual of the cube in the sense
that the vertices of the octahedron correspond to the faces of the cube, and
vice versa. Therefore, the cycle index of the group of rotations actng on the
vertices is exactly the same as that of the same group acting on the faces of
the cube. and this was found in Example 5.4 to be
o} + 823 + 623 + 6232, + 322z}

24
By Polya’s theorem, the number of diferent cubes obtained is the coefficient
of abedef in

15



(@+btctdyey ok
Sampotes f)
24

i 6
T, 4, 1,1)

= 30.
Note that this procedure counts both geometrical and optical isomers.

Example 8.2 There is a great deal of scope for the application of Polya

Theory in the study of organic molecules. Carbon in jts unsaturated form, is
ihe centre of a tetrahedral molecule idealised as shown

1

v

There are two rotations that fix the substituent 4, through 120 and 240",
permuting the other 3 substituents in a 3- cycle. Thus, these rotations
contribute a term 4 - 2 - xx3to the cycle index. Next, we fix the axis on the
line joining the midpoints of opposite sides, say 14 and 23. 180 rotations
about this axis give us the cycles (14),(23). There are 3 such axes, giving us
the term 3- 23 . Including the identity, we obtain the cycle ndex

o} + 8zy73 + 313
12

) Existence of the enantiomeric form: Suppose the substituents p,g,7,s

are all different. We want to find the number of molecules of the type Cpgrs.
This

is the coefficient og pgrs in the pattern inventory, whichis 12
16
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The oceurrence oftwo patterns (non- superimposable molecules
Substituents are dnfferent 18 called chirality and the molecules fo
SEPRRER 7 11

These molecules form a mirror- image. Indeed, by fixing two substituents,
e can interchange the other two, i.e. reflect them about the mirror formed
by the planelof the fixed sub_stltuents. This also tells us why the substituents
need to be different: qtherwse, We can choose the mirror so that one
nolecule s reflected into itself.

i chemist studying the hydrogen content of alkyl halides with one
carbonmust know how many compounds are possible for a given number of
hydrogen substituents. This asks for the pattern inventory with H weighted
with # and the halogens CI,Br,1 weighted with 1 each. The pattern inventory
is obtained by substituting for x; the quantity 4+ 3 in the cycle index, and
carrying out the required computation we obtain :

) when the
rm

plL=h'+3m+ 62+ 11h+5
which solves the problem.

This theory can be extended and generalised, in ways we shall not look into
here; for example, what if a group acts on the elements of the range as well?
A generalisation to Polya’s theorem in this regard was provided by Nikolaas
de Bruijn, and there are various extensions that I hope to be able to acquaint
myself with in future.

I am grateful to Professor B. Sury of the Indian Statistical Institute,
Bangalore, for guiding me and suggesting that I read some articles,
including his own, related to Burnside’s Lemma and related aspects of
group theory, which became the motivation for this study.
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" lya’s Theory of Counting
0

Example 1 A disc lies in a plane. Its centre is fixeq but it is free to rotate. It has

een divided into 72 sectors of angle 22/n. Each sector js to be colored Red or Blue.
l;l  many different colorings are there?
0

| onecould argue for 2°.

On the other hand, what 1fv've only distinguish colorings which cannot be obtained
| fjomone another by a rotation. For example if 71 = 4 and the sectors are numbered

012310 clockwise order around the disc, then there are only 6 ways of coloring
e diso— 4R, 4B. 3RIB, IR3B, RRBB and RBRB.

Now consider an 72  n “chessboard” where n> 2. Here we color the squares Red
and Blue and two colorings are different only if one cannot be obtained from
another by a rotation or a reflection. For n=2 there are 6 colorings.

The general scenario that we consider is as follows: We have a set X which will
stand for the set of colorings when transformations are not allowed. (In example 1,
IX|=2"and in example 2, |X] = 2").

Inaddition there is a set G of permutations of X. This set will have a group
structure:

18




Given two members g1, ¢, € G we can defi
- gi(ga(x)) for x € X. We require that G i

ifg, ©2€ G.
We also have the following:

A1 The identity permutation 1y € G,

A2(g1°8)°&=81°(22° ) (Composition is associative).
A3 The inverse permutation g™' € G for every g € G.

ne their composition g ° g, by g1 ° 82(*)
closed under composiiton i.c. g1° g2€ G

(Aset G with a binary relation  which satisfies A1,A2,A3 is called a Group).

Inexample 1D=1{0, 1,2,., n—1}, X=2Pand the group is G1 = {eq, e1,..., €1}
where ;% x =X+ mod n stands for rotation by 2jm/n.

In example 2, X'= 2" We number the squares 1,2,3.4 in clockwise order starting
at the upper left and represent X as a sequence from {7, b} where for example rrbr
means color 1,2.4 Red and 3 Blue. G,={e, a, b, ¢, p, g, . s} is in a sense
independent of . ¢, a, b, c represent a rotation through 0, 90, 180, 270 degrees
respectively. p, g represent reflections in the vertical and horizontal and 7 s
represent reflections in the diagonals 1,3 and 2.4 respectively.
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From now on we will write g # x in place of g(x).
orbits: If x € X then its orbit

o/={yeX:3ge€ Gsuchthatg*x=y}‘
Lemma 1 The orbits partition X,
Proof x=ly*xandsox € O,andso Y= SxEx O, .

Suppose now that O:N 0,6= @ i.e. 3g;, g, such that g1*x=g *y. But
then for any g € G we have

g»x:(go(gl“ o) +y € o}

and s0 0x € O,. Similarly O, C O, . Thus 0, = 0, whenever
0.N 0,6= 0. The two problems we started with are of the following form:

Given a set X' and a group of permutations acting on X, compute the number of
orbits i.e. distinct colorings.

Asubset H of G is called a sub-group of G if it satisfies axioms A1,A2,A3 (with G
replaced by H).

The stabilizer Sy of the element x is {g : g * x =x}. It is a sub-group of G.
Al: Iy*x=x.
A3: g heSyimplies (goh)*x=g* (h*x)=g*x=x.

A2 holds for any subset.
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Lemma 2
ifx € X then O [IS¢| =|G].

proof Fix x € X and define an equivalence relation ~ on G by
g~ Qifgixx=gxx

Let the equivalence classes be 4, 4, 4
|A1|:|SX| i=1, 2,..., m. (1)

Fixiand g € 4. Then

m- We first argue that

hEAdio g*xX=h*xx e (gleh)xx=yx
(—')(g_]oh)ESx(—)hEgon

where g° Sx={g°0:0 €S, }.
Thus |4} = |g ° Sx |- But |g ¢ S;| = S| since if 61,0, € Syandgeo;=g° ortheng™e

(gom)=(g'l°g)°o1:a1=g_l°(g°02)=az.

This proves (1).

Finally, m = |Ox| since there is a distinct equivalence class for
each distinct g * x.
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® O Sk

—r’r;r—, {rrer} S p———— G

brer {brrr,rbrr,rrbr,rrrb ) Eo ! B
tbrr {brrt,rbrr,rrbr,rrrb) {eo} %
T {brrr,rbrr,rrbr,rrrb) {eo} a
trrb {brrr,rbrr,rrbr,rrrb) {eo) m
bbrr {bbrr,rbbr,rrbb,brrb} {eo) p
tbbr {bbrr,rbbr,rrbb,brrb} (e} |
rrbb {bbrr,rbbr,rrbb,brrb} {eo} e
brrb {bbrr,rbbr,rrbb,brrb} {eo}

rbrb {rbrb,brbr} {eo, e} 1
brbr {rbrb,brbr} {eo, €2}

bbbr {bbbr,rbbb,brbb,bbrb} {eo} n=4
bbrb {bbbr,rbbb,brbb,bbrb} {eo}

brbb {bbbr,rbbb,brbb,bbrb} {eo}

rbbb {bbbr,rbbb,brbb,bbrb} {eo}

@ {bbbb} G
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4 O S«
rIrr {e} G
brrr {brrr,rbrr,rrbr,rrrb} {e,r}
rbrr {brrorbrrrrbrrrrb) {e,s}
rrbr {brrr,rbrnrrbr,rrrb} {er}
rrrb {brrr,rbrr,rrbr,rrrb} {e,s}
bbrr {bbrr,rbbr,rrbb,brrb} {e,p}
{bbrr,rbbrrrbb,brrb} {e.q}
b tep)
{bbrr,rbbr,rrbb,brrb}
brrb {bbrr,rbbr,rrbb,brrb} {e,q}
rbrb {rbrb,brbr} {e,b,1;s}
brbr {rbrb,brbr} {e,b,1;s}
bbbr {bbbr,rbbb,brbb,bbrb} {e,s}
bbrb {bbbr,rbbb,brbb,bbrb} {er}
brbb {bbbr,rbbb,brbb,bbrb} {es}
rbbb {bbbr,rbbb,brbb,bbrb} {er}
bbbb {e} G
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i denote the n:lmber of orbits.
TG > 1S4
e

Letvx

G
Theorem 1vX

proof

)
G = ZW v.X,
XEX

|G| xeX

from Lemma it
Thus in example 1 we have
G A AL

1 i b
VX6 = z(4+'l+1+l+l+|+1+|+|+2+4+|+1+1-1+4) =6

iG] X8

In example 2 we have




Theorem ] is hard to use if |X] is large, even if |G| is small

For8
rheorem 2
probenius, Burnside:

I :
x°= 1 Z|F!x(g)|~

g€eG
proof LetA(x, g = gt Then
1
x° = @l
xEX
1
e A(x, g)
IG| Xe X€E
X XgG
1
Sl Alx, 8)
|G| Xe X€
gGxX
1
= —  |Fix(g)l
|G| Xe
gG
26

eGletFix(g)={x€X:g*x=x}'




et us consider example 1 with n = 6, we compute

€2 €3 €4 és

|Fix(g)| 64 2 1

Applying Theorem 2 we obtain

1
”X.G=6(54+2+4+8+4+2):14

Cycles of a permutation:

Let 7 : D — D be a permutation of the finite set D. Consider the digraph I'; =

(D, A) where A = {(i,n(i)) : i € D}.Izis a collection of vertex disjoint cycles.
Each x € D being on a unique cycle. Here a cycle can consist of a loop i.e. when
m(x) = x.

Example: D =[10].
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The cycles are (1, 6, 8),(2),(3, 7, 9, 5).(4, 10).

In general consider the sequence ; (i), 72(i),

.....

Since D is finite, there exists a first pair k < ¢ such that
have k= 0, since otherwise putting x = R
contradicting the fact that 7 is a permutation.

* (i) = 7'(i). Now we must
y = 77\(i) we see that z(x) = n(y),

So i lies on the cycle C = (i, (i), 22(i),..., #*\(i), i).

Ifjis not a vertex of C then 7(j) is not on C and so we can repeat the argument to
show that the rest of D is partitioned into cycles.

Example 1
First consider ey, ey,..., e,—1 as permutations of D.
The cycles of e are (1),(2),....(n)-

28




ose that 0 <
NoW h “ <. e .Let m=ged(m, ny and . - 7
,,, containing the eleme.nt.z SR G e i+lr('k #/ay. The cycle C;of
divisor kmm and not a divisor of Km for ' < k int m— 1)m) since nis a
Ciyvevs Gammal m- N total, the cycles of e, are Cp,

This is because they are disjoint ang together contain 5
elements. (If i +rm =i+ r'mmod ,, then

7 r)m+ (i _,i) ={n. But|i - i| < amand so dividin

st BEVB g by a,, we see that we

Next observe that if coloring x is fixed by e,, then elements on the same cycle C;
must be colored the same. Suppose for example that the color of i + bm is different
from the color of i + (b + 1)m, say Red versus Blue. Then in ex(x) the color of i +
(b+ 1)m will be Red and so en(x) 6= x. Conversely, if elements on the same cycle
of e, have the same color then in x € Fix(e»). This property is not peculiar to this
example, as we will see.

Thus in this example we see that |Fix(e,)| = 2" and then applying Theorem 2 we
see that

n—-1vXG=1 2gcd(m,n). n X
m=0
Example 2
Itis straightforward to check that when 7 is even, we have
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For example, if we divide the chessboard into 4 n/2
numbered 1,2,3.4 then a coloring is in Fix(a) iff eac
have colorings which are rotations of the coloring i

X n/2 sub-squares,
h of these 4 sub-squares
n square 1.

Polya’s Theorem

We now extend the above analysis to answer questions .like: How many distinct
Ways are there to color an 8 x 8 chessboard with 32 white squares and 32 black
SQuares?
The scenario now consists of a set D (Domain, a set C.(colors) and X —f{x :D—
C} is the set of colorings of D with the color set C. G is now a group o
Permutations of . _

¢ see first how to extend each permutation of D to a permutation of X Suppose
that EXf:lndg € G then we define g * x by

30
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g+ x(d)=x(g"'(d) forallde D,

Expla“"tiO“: The color of d is the color of the element g '(d) which is mapped to
it by & 0 B i

Consider Example 1 with #n=4. Suppose that g = ¢, i.e. rotate clockwise by /2 and
()= b x(2)= b, x3)=rx(4)=r.

Thell for example g * x(1) = x(g7'(1)) = x(4) = r, as before.

sociate a weight w. with each ¢ € C.

Now as
W(x) = Yewx(d).
d D

Thus, if in Example 1 we let w(r) = R and w(b) = B and take x(1) = b, x(2)=b,
x(3) =1, x(4) = r then we will write W(x) = B*R?.

For S € X we define the inventory of S to be W(S) = X€ W(x).

x S

The problem we discuss now is to compute the pattern inventory P/ = W(S*)

where S* contains one member of each

orbit of X under G. d
For example, in the case of Example 2, with n =2, we get PI=R'+ R°B+ 2R’B

+RB*+ B*.

To see that the definition of P/ makes sense We need to prove Lemma 3 If x, y are

in the same orbit of X then W(x) = W(»).
Proof Suppose that g * x = y. Then
Wy) =YEeEwy(d)
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dD
= Yewgrx(d)
dD
-Ye wx(g—'(d))

D
=Yewx(d)) 3)
dD
= M)

Note, that we can go from (2) to (3) because as d runs over D, g™(d) also
qns over d. -Let A=|D|. If g € G has & cycles of length  then we define

A0)= 0% A xip

The Cycle Index Polynomial of G, Cgis then defined to be ‘; X 9}&.;1% 1

| ' ; | ]‘.
CG(X‘UX:: cee |XA) = l_G_| ZCt(g) i

geCG

In Example 2 w1th n 2 we have
. iy Kg) 4 . 0y 4




qnd SO 1
5 = 2
G(x,,xz,x_q Xa) 8(Xi1 +3x35 + 2x7xp + 2x4)

i Example 2 with » =3 we have

ctlg) | %19 | x1x42 | x1x24 | x1x42 | x13x23

X13X23

X13x23

X|3X23

and so

1 ; >
CG(X1 X2, X3.Xy4) = §(;r,9 + x5 + N3 + 2x1X5)

33




i\ T~ Ix =yl
o \1E 2

=Fix(g")|0 by Theorem 2 i[]

i ix(g'?)
. LTI,

g€eG i=1
= ! (4)
iV (Fix(g))
G| Xe
gG
Note that (4) follows from Fix9) = U Fix(¢"") since x € Fix(g?) iff x € X;and

g*X =1
Suppose now that ¢A9) = X{' Xz --X&* a5 above. Then we claim that

(= w) (> w) barat

W(Fix(g))= °¢ 255 geg i EUE)

Substituting (5) into (4) yields the theorem.

To verify (5) we use the fact that if x € Fix(g), then the elements of a cycle of g
must be given the same color. A cycle of length 7 will then contribute a factor.€c"’
where the term %,/ comes from the choice of color ¢ for every element of the

cycle.P
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Abstract

The field of mathematics plays vital role in various fields. One of the important areas
in mathematics is graph theory which is used in structural models. The Kénigsberg Bridge
problem and Hamilton's game would give rise to two concepts in graph theory named after
Euler and Hamilton. The study of Eulerian graphs was initiated in the 18th century, and that
of Hamiltonian graphs in the 19th century. These graphs possess rich structure, and hence their

study is a very fertile field of research for graph theory.

There are many games and puzzles which can be analysed by graph theoretic concepts.In fact,
the two early discoveries which led to the existence of graphs arose from puzzles, namely, the
Konigsberg Bridge Problem and Hamiltonian Game, and these puzzles also resulted in the spe-
cial types of graphs, now called Eulerian graphs and Hamiltonian graphs. Due to the rich struc-

ture of these graphs, they find wide use both in research and application.

The existence of Euler and Hamiltonian graph make it easier to solve a real-life problem. Dur-
ing the time of pandemic “Covid-197, it is very essential for each one of us to be vaccinated.
Vaccination is done in the hospitals by using Eulerian and Hamiltonian graphs not only to pre-

vent people from infecting but also to increase the speed of vaccination.
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Chapter 1

Introduction of Graphs

Graph s defined as an ordered Parrolanonsset of vertiees nnd o set ol edpes, G (V(Ci). ()

Flere VG s the set of vertices or nodes and FCGH s the set ol edpes connecting the vertices

Yertex / Node

One ot the points on which the graph is defined and which may be connected by graph edges,
From fig L1 the setof vertex V = (v, vy, P, 4, Py )

Edge

An edge ofa graph is one of the connection between the nodes or vertices of the graph, It can

be connection rom one vertex (o next.

From fig 1.1 the set of edge £ = {ey, ey, 4, ¢4, €5, €4)

Fig 1.1 vertex and edge
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Degree of a vertex

B ~ '\ PN p N ~ y \ . .
The degree (or valeney) of a vertex of a sraphos the number of edpes that are imeident (o the

verteX. ltis denoted by O (V) or deg(v) as shown in fip 10

-
—
L
v,
S
M &V » laa
O \'\\l\‘ X L L\
)
- ] { \ )
‘\\;‘3\\" ) Sl .
O
da VIR )
YL e N N <

Fig 1.2 degree of vertex
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Chapter 2

Types of Graph

2.1 Regular Graph

A graph in which degree of all the vertices is same is called as a regular graph.

If all the vertices in given graph are of degree 'k’ then it is called as a “k-regular graph*

Fig 2.1 Regular Graph

In gigure 2.1, since each vertex in the graph is connected with all the remaining vertices through’
exactly one edge therefore. both graphs are complete graph.

In the above graph all the vertices have degree 2. Therefore it is 2- Regular graph.

2.2 Simple Graph

A simple graph is the undirected graph with no parallel edges and no loops.
In fig 2.2, First graph is not a simple graph because it has two edges between the vertices A
and B and also has a loop.

Second graph is a simple graph because it does not contain any loop and parallel edges.

Multiple Edguf‘/,v"/- ?\\\ L-oup
N ST
Y N )
I / \ i
| / \
| / N |
I o
7 \
é——' ——30
Not a Simple Graph Simple Graph

Fig 2.2 simple Graph
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2.3 Complete Graph

A graph in which every pair of vertices i i
grap y pair of vertices is joined by exactly one edge is called complete

graph. It contains all possible edges, It is denoted by
- n

Fig 2.3 complete Graph

2.4 Bipartite Graph

A bipartite graph is a graph whose vertices can be divided into two disjoint and independent

sets U and V such that every edge connects a vertex in U to one in V.

U v

\\

P \"4
\3

Fig 2.4 Bipartite Graph

2.5 Complete Bipartite Graph
A special kind of bipartite graph where every vertex of the first set is connected 10 every vertex

of the second set.
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1y

Pl 25 Complete Bipartite Graph

Here, total vertices ave 342 . \ \ - \
8 VAN SoLedpes < 3 x 2 <6, This is acharacteristics of complete

biparnte praph

2.6 Connected Graph

\ graph is said 10 be conneeted graph il there is a path between every pair of vertex, From

cvery vertex to any other vertex there must be some path to traverse,

Fig 2.6 Connected Graph
2.7 Disconnected Graph
A graph is disconnected if at least two vertices of the graph are not connected by a path. If a

graph G is disconnected, then every maximal connected subgraph of G is called a connected

component of the graph G,

Fig 2.7 Disonnected Graph
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Chapter 3

Basic Definitions

3.1 Walk

Yelinition: Fora gy (VG 1 ‘ .
Detinition: Fora graph GG E(()), a Walk is defined as a sequence of alternating vertices

and edges such as 1

walk is 4.

2001, V1, €9,.....61, V e anoh adoas o .
00 €1V €y, V) Where each edge ei={v_y, v}, The Length of this

TOT O\ 4 \ N (Y e R i ’ .
Forexample, the graph fig 3.1 outlines a possibly walk (in blue). The walk is denoted as abcdb.

Note that walks can have repeated edges. For example, if we had the walk abcdebee, then that

would be perfectly fine even though some edges are repeated.

Fig 3.1 walk

Note that the length of a walk is simply the number of edges passed in that walk. In the graph

above, the length of the walk is abedb is 4 because it passes through 4 edges.

3.2 Open / Closed Walk

Definition: A walk is considered to be Closed if the starting vertex is the same as the ending
vertex. that is vy = vy. A walk is considered Open otherwise.

For example, the following graph shows in fig 3.2 a closed walk in green:
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Fig 3.2 Open/closed walk

Notice that the walk can be defined by cegfe, and the start and end vertices of the walk is .

Hence this walk is closed,

3.3 Trail

Definition: A Trail is defined as a walk with no repeated edges.

So far, both of the earlier examples can be considered trails because there are no repeated

edges. Here is another example of a trail:

Fig 3.3 Trail

Notice that the walk can be defined as abe. There are no repeated edges so this walk is also a
trail.

3.4 Path

Definition: A Path is defined as an open trail with no repeated vertices.
Notice that all paths must therefore be open walks, as a path cannot both start and terminate at

the same vertex. For example, in fig 3.4 orange coloured walk is a path.
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a f

Fig 3.4 Path

Because the walk abede does not epeat any edges

3.5 Cycle

Definition: A Cycle is defined as a closed trail where no other vertices are repeated apart from
the start/end vertex.

Fig 3.5 is an example of a circuit. Notice how no edges are repeated in the walk begfb, which

makes it definitely a trail, and that the start and end vertex b is the same which makes it closed.

Fig 3.5 Cycle

3.6 Circuit

Definition: A Circuit is a closed trail. That is, a circuit has no repeated edges but may have
repeated vertices.

An example of a circuit can be seen in fig 3.6. Notice how there are no edges repeated in the
walk sibcdefcgh, hence the walk is certainly a trail. Additionally, the trail is closed, hence it is

by definition a circuit.
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Theorem 3.1 (Handshaliing Lcmma):

In any graph G d = e
) ! Yo *8(V) = 2|E] that is any graph G sum of degree of all the vertices is
equal to two times of number of edges in it

Proof: let S = {(v,e):v € V(G),e E(G))

Count |S] in two different ways. Fix v € V(G) then there are dg

g(V) possibilities for e € E
such that (v,e) € §

Hence, [S| = X, evdeg(V)............ (1)

On other hand if e € E(G) then there just two possibilities of v € V(G) such that (v,e) € §

Hence, |S| = 2|E]................ )

From (1) and (2).

z deg(V) = 2|E|
veEV

Hence, complete proof.

Theorem 3.2: In a finite singal graph number of vertices of odd degree is even.

Proof: Let G be a simple graph and Let A be set of even degree and Bvset of vertices of odd
degree in G respectively.

ThenV(G)=AUBand ANB=20

Then by handshaking lemma we have,
20E(G)] = Z deg(V)
VEV

= Y,eadeg(V) + Xyepdeg(V)
Now, as 2|E(G)| and Y, ¢ 4 deg(V) both are even number.

Therefore, ¥, ¢ g deg(V) is also an even number.

10
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Chapter 4

pulerian Graph

lll(' story S1ars \\'l”l llll' mhay
b Wor ol UUTee T /
i Prssian « Iy wlho wrote (o the fmans matheras

cian Leonhard Ewler with a question: how could one walk through [6nigaberg without eross

ing

any ol its bridges twice ? At fivst, Fule
] CLiest, Boder thought this question trivial, but (he “Severn Phridges

o Konipsberp Problem™ | TE ' \
ol Konig ! ind its solution helped pave the way toward new mathemitic il

branches of topology and graph theory,

4.1 Konigsberg bridge problem / Seven bridge problem

Ihe Konigsberg is the name of the German city, but this city is now in JLusnia
In the below image, we can see the inner city ol K onigshery with the river Prege

Ihere are a total of four land arcas in which this river Prepel is divided, e A

Ihere are total 7 bridges to travel from one part of the city 1o another part of the city,

Fig 4.1 Konigsberg, bridge

Solution of Konigsberg Bridge problem

In 1735, this problem was solved by Swiss mathematician Leon hard Fuler,

According to the solution to this problem, these types of walks are not possible.

With the help of following sraph, Buler shows the given solution.,

13, Coand D,

11
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Fig4.2 Konigsberg bridge simplified

In the above graph, the following things have:

The vertices of this graph are used to show the landmasses.
The edges are used to show the bridges.

Now we will consider an image and try to understand the concept of Konigsberg Bridge:

F !\/(—~’ D r

4‘/)

1s|and

(™S

river bank B

~o

island

Fig 4.3
So, in the end, Euler proved that this type of walk is not possible. Euler proved it with the help

of inventing a kind of diagram, which is known as the network.

In the above diagram, 3 bridges (arcs) were used to join riverbank A, and 3 arcs were used to
join riverbank B.

12
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B

Euler found that if a network contains the followi
§ n

- o g things, only then that network will be

o The network does not contain any odd vertices. Here, the st
3. 8 €S

o arting vertex and the end
vertex must be the same, The starting vertex can be

any vertex, but the ending point
must be at the same starting vertex
Or the network ¢ i i
ontains two odd vertices. Here, the beginning point must be the one

odd vertex, and the endpoint must be the other odd vertex
e Since there are 4 ertices | ;

are total 4 odd vertices n the Konigsberg network. therefore Euler con-

cluded that the network is not traversable

e Thus, Euler finally concluded that it is not possible to traverse the desired walking tour
of Konigsberg.

13
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Leonhard Euler
(1707-1783)

Leonhard Euler { 15 April 1707 - 18
september 1783) was a Swiss
mathematician, physicist,
astronomer, logician and engineer
who made important and influential
discoveries in many branches of
mathematics like infinitesimal
calculus and graph theory while also making pioneering
contributions to several branches such as topology and analytic
number theory. He also introduced much of the modern
mathematical terminology and notation, particularly for
mathematical analysis, such as the notion of a mathematical
function. He is also known for his work in mechanics, fluid
dynamics, optics, astronomy, and music theory.

Euler was one of the most eminent mathematicians of the 18th
century, and is held to be one of the greatest in history. He is
also widely considered to be the most prolific mathematician of
all time. His collected works fill 60 to 80 quarto volumes, more
than anybody in the field. He spent most of his adult life in Saint
Petersburg, Russia, and in Berlin, then the capital of Prussia.

A statement attributed to Pierre-Simon Laplace expresses
Euler's influence on mathematics: “Read Euler, read Euler, he is

the master of us all.”

Fig 4.4 Leonhard Euler

14
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4.2 Euler Path

b in the connected gra h that visits every edpe ‘
A pdlh p very edge of the graph exactly once with or without

rcpciitillg tl

A B
B
<

Fig 4.2 example of Euler Path

Fuler path for fig2.2isF,A,B,C,F, E,C,D,E

ve vertices. then such a path is called as an Euler path

This Euler path travels every edge once and only once and starts and ends at different vertices.

4.3 Euler Circuit

An Euler path that starts and ends at the same vertex is called as an Euler circuit.

A B
E F
c D

Fig 4.3 exampie of Euler Circuit

Euler circuit of above graph is E. A, B, F, E. F. D, C, E
This Euler path travels every edge once

Iherefore, it is also an Euler circuit.

and only once and starts and ends at the same vertex.

15
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4.4 Eulerian Graph

A connected graph G is called an Euler graph,

if there is g closed trail which i
includes eve
edge of the graph G. or An Euler Graph is a con y

nected graph that contains an Euler Circuit.

Fig 4.4 Example of Euler Graph

The above graph is an Euler graph asa I b2 c3 dde5c6 7 g covers all the edges of the
graph.

A closed walk in a graph G containing all the edges of G is called an Euler line in G. A graph
containing an Euler line is called an Euler graph.

We know that a walk is always connected. Since the Euler line (which is a walk) contains all the
edges of the graph, an Euler graph is connected except for any isolated vertices the graph may
contain. As isolated vertices do not contribute anything to the understanding of an Euler graph, !

it is assumed now onwards that Euler graphs do not have any isolated vertices and are thus

connected.
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Theorem 4.1: (Euler's Theorem): A connected grapl G=(I

R G).E(G)) is Eulerian if and only
if all vertices in J(G) have an evep degree.

Proof: We now have the necessitjes 10 prove Euler's theos

€m on Eulerian graphs.
We will prove this theorem using mathematica| induction

For a connected graph G=(M(G).E(G)). for each e>0, let §(¢)

be the statement that
if G has e edges and all of the de

1" = ] 4 1 ~ 1 7 - )
grees of vertices in (G) are even, then the graph G is Eu-
lerian.

Base Step: (e=0): S(0) has no edges. Sinc

ce the graph is connected, the only possibly way a

connected graph can have no edges is that the graph is a single vertex. Jet's c

all it x;. deg(x; )=0.
which is even. and is trivially Eulerian.

Induction Step: S(0)AS(1)A...AS(k—1 )=8(k)): Let k>

I and assume that. S(1 ).8(2),....S(k+1) is
true. We want to prove S(k)

is value. Let G be a graph with k-

edges. is connected. and all ver-
tices of G have even degrees.

Since G is a connected graph, there are no isolated vertices, so it follows that the smallest de-
gree d(G2>1.

But all d

egrees are even, so d(G)>2. From above. this graph G must contain a cycle, let's call
itC.

Now let's create a new graph H by removing all of the edges that are in graph C from graph G.

Note that the graph H may be disconnected. We can say the graph H is the union of the con-

nected components Hy, H, ... ... «+« Hy The degree is each H; must be even since the degrees

drop only by 0 or 2.

Applying the induction hypothesis to each H; thatis S(|E(H,)I),....S(IE(H,)|), each H; will have

an Eulerian circuit, let's say ;.

We can now create a Eulerian circuit for G by splicing together the graph C with the Ci's. First
start on any vertex of C; and traverse until you hit some H;. Then traverse C; and continue back

on C until you hit the next H;.

Conclusion: Thus it follows that G must be Eulerian. This completes the inductive step

as S(0)AS(1)A...AS(k—1)=>S(k)). By the principle of strong mathematical induction.

for €20, S(e) is true.

17
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fheorem 4.2: A connected graph G is Eulerian if and only if its edge set can be decomposed
into cycles:
proof : Let G(V. E) be a connected graph and let G be decomposed into cycles

1fk0f‘hese cycles are incident at a particular vertex v. then d(v) =2k

Therefore the degree of every vertex of G is even and hence G is Eulerian

conversely, let G be Eulerian.

we show G can be decomposed into cycles.

To prove this. we use induction on the number of edges.

gince d(V) = 2 for each v € V, G has a cycle C. Then G-E(C) is possibly a disconnected

= ‘hose ¢ 2 ki o 5 .
graph, cach of whose components C1, C2, ..., Ck is an even degree graph and hence Eulerian.

By the induction hypothesis, each Ci is a disjoint union of cycles. These together with C pro-

vide a partition of E(G) into cycles.

Theorem 4.3: A connected graph is Eulerian if and only if each of its edges lies on an odd

number of cycles.

Proof: Necessity Let G be a connected Eulerian graph and let e = uv be any edge of G.

Then G—e is a u—v walk W, and so G—e = W contains an odd number of u—v paths.

Thus each of the odd number of u—v paths in W together with e gives a cycle in G containing

e and these are the only such cycles.

Therefore there are an odd number of cycles in G containing e.

Sufficiency Let G be a connected graph so that each of its edges lies on an odd number of
cycles.

Let v be any vertex of G and E,, = {e, .... €q } be the set of edges of G incident on v,

then |E,| = d(v) = d. For each i. | <i<d. letk; be the number of cycles of G containing e;.

By hypothesis, each k; is odd.

Leto(v) be the number of cycles of G containing V.

18
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~ Addanew edge to the graph with endpoits v and w. forming G-

L T
phen clearly ¢(V) = 3 =1 i implying that 2¢(v) = I k.

gince 2¢(v) is even and each k; is odd. d is even.

Hence G 1 Eulerian.

Theorem 4.4: A connected graph G has an Eulerian trail if and only if it has at most two odd

vertices.

Lo, it has either no vertices of odd degree or exactly two vertices of odd degree.
proof: Suppose G has an Eulerian trail which is not closed.
Since each vertex in the middle of the trail is associated with two edges

since there is only one edge associated with each end vertex of the trail, these end vertices

must be odd and the other vertices must be even.

Conversely, suppose that G is connected with atmost two odd vertices.

If G has no odd vertices then G is Euler and so has Eulerian trail.

The leaves us to treat the case when G has two odd vertices (G cannot have just one odd vertex

since in any graph there is an even number of vertices with odd degree).

Theorem 4.5: A connected graph G has an Euler walk if and only if exactly two vertices have

odd degree.

Since a path may start and end at different vertices, the vertices where the path starts and

ends are allowed to have odd degrees.

Proof. Suppos that G has an Euler walk starting at vertex v and §nding atvertex w.

as an Euler circuit, and so by the p;eviqus theorem ¢

)
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suppose that the degrees of vand w in G are odq, while all other v
N . e

NoW rtices have even de-

a[ce:
e

edge e to the graph with endpoints v and w

Add a new (‘()l.l“i"p‘ (@12

E

v, €1 V2
'

yery vertex in G' has even degree, so there is an Euler cireuit which we e
/ /€ ¢t e as

gy W, 8,V

(hat ), €1, V2, €2 -+ W is an Euler walk,
SO

F,x:mlp](‘

G G2

Fig 4.5 example of theorem 4.5

G4 has two vertices of odd degree and and the rest of them have even degree. So this
graph has an Euler path but not an Euler circuit. The path starts and ends at the vertices of

odd degree. The path is a.c,d.a.b.d.

G, has four vertices all of even degree, so it has a Euler circuit. The circuitis a.d,b,a,c,d,a

Unicursal Graphs

An open walk that includes (or traces) all edges of a graph without retracing any edge is called
aunicursal line or open Euler line. A connected graph that has a unicursal line is called a unicur-

sal graph. Figure below shows a unicursal graph.

20
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Fig 4.6 a unicursal graph.

y by adding an edge between the initial and final vertices of a unicursal line et
, we get an

Clearl
puler line-

Theorem 4.6: A connected graph is unicursal if and only if it has exactly two vertices of odd

degree.

proof: Let G be a connected graph and let G be unicursal.

Then G has a unicursal line, say from u to v, where u and v are vertices of G.

Join u and v to anew vertex w of G to get agraph H.

Then H has an Euler line and therefore each vertex of H is of even degree.

Now, by deleting the vertex w, the degree of vertices u and v each get reduced by one, so that

' yand v are of odd degree.

Conversely, let u and v be the only vertices of G with odd degree. i

Join uand v to a new vertex w to get the graph H. .

So every vertex of H is of even degree.

Thus 4 is Eulerian. Therefore, G = H —w has a u =V unicursal line so that G is unicursal

Sub Eulerian Graph: A graph G is said to be sub-Eulerian if itis aspanning subgraph of

some Eulerian graph.

 Supper Eulerian Graph: A non-Eulerian graph G issaid (¢
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4.5 Chinese Postman Problem

The postman problem i

p p is how to cover all streets in the route and return back to the

= . 3 4 \N" S o oy o g . %

sarting point with as short travelling as possible. It is referred to as the Chinese postman prob-
because § 'k i

Jem (CPP)becz the first work publisged on problem was by Chinese mathematician Meigu

Guan, in 962.

It says that a postman picks up mails at the post office, delivers it along a set of streets, and
returns to the post office. In practice, apart from the requirement of traveling all streets. we
consider the street direction. number of postmen. But in the present environment of considera-
tion of a time window constraint is necessary. Chinese postman problem with time window

constraint such that this problem can simulate the real situations.

Chinese Postman problem is a variation of Eulerian circuit problem for undirected graphs.
An Euler Circuit is a closed walk that covers every edge once starting and ending position is

same. Defined for connected and undirected graph. The problem is to find shortest path that

visits every edge of the graph at least once. In order to do so. he (or she) must pass each street

once and then return to the origin.

If input graph contains Euler Circuit, then a solution of the problem is Euler Circuit

graph has Eulerian cycle if “all vertices have even degree™.
Euler Circuit.

An undirected and connected

If input graph contains Euler Circuit, then a solution of the problem is

Steps involve in solving Chinese postman problem:

1. Total weight = sum of weight of all edges

2. Identify all the odd vertices in the graph.

3. Determine all possible pairings of odd vertices.

4. Choose the pair with minimum weight.

ously as edges to the original graph.

5. add the combination of pairings found previ

6. Identify new path.

22
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we will apply the above steps in the followin

g example to find a minimum Chinese post-

*- : 5

A

Fig 4.7 example of Chinese postman problem

B. C.Fand D are odd vertices.

Possible pairings of odd vertices are BC-FD, BF-CD and BD-CF.
For each pairing find the edges that connect the vertices with the minimum weight:
BC-FD: 8+12=20.

BF-CD: 11+10=21.

e e £ 1 4

d
BD-CF: 18+18=3

Find the pairings such that the sum of the weights is minimized: BC-FD

On the original graph add the edges that have been found in Step 4.

——

- Fig4.8optimal graph of Chinese postman problem
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('mwlusmn.

| weight should be 7942009
l.\\lil «

sssible route of this weight can e AFEDID( TRCBA
A oS

4.5.1 Applications of Chinese Postmyy Problem;

The Chinese postman problem is to find o least cogt Way 1o travepge cach are of 4 network at
« Y ‘

|cast once and to return to the vertex from which you Started, Diverge problems such as

Cud i |

e Therouting of road crews

e Police patrol scheduling
e Garbage collection

o Road sweeping

e School bus routing

Transmission line inspections etc, can be done by Chinese postm

an problems.
e The practical example is planning of bus routing. In order to save (he cost on the fuel,
the bus company have modelled the bus

stop as the vertix and the road as the edge in
the bus route, then using the graph theory 1o obtain the optimal route that can meet the
target of using the minimal fuel but across every road, at least once,

o

24
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Chapter 5

familtonian Graph

Sir William Rowan Hamilton

.

Sir William Rowan Hamilton (
August 4, 1805 - September 2,
1865) was an Irish
mathematicianSir, physicist,
and astronomer who made
Important contributions to the
development of optics,
dynamics. and algebra. His
discovery of quaternions is
perhaps his best known
investigation. Hamilton's work
was also significant in the later
development of

quantum mechanics.

Fig 5.1 William Rowan Hamilton

The cyele was named after Sir William Rowan Hamilton an Irish Mathematician

(1805-1865) in 1857, invented a puzzle-game now also known as Hamilton's puzzle, which

involves finding a Hamiltonian cycle in the edge graph of the dodecahedron. Which involved

hunting for a Hamiltonian cycle. The game, called the Icosian game, was distributed as a do-

decahedron graph with a hole at cach vertex. To solve the puzzle or win the game one had to

use pegs and string to find the Hamiltonian cycle a closed loop that visited every hole exactly
once.

0 1 . 11 SN A o > (N NR N a.c yse walk )‘.\
The aim of the game was to construct, using the edges ol the dodecahedron a close walk ofall
v exactly once. beginning and ending at the same city. [n

the cities which traversed each cit
in the graph corresponding o the

other word, one had essentially to form a Hamiltonian cycle

dodecahedron fig. below shows such a cycle.

25
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od cach of the vertices with the name of an important city. The challenge was to find

He fabell
g route along t

(o the start. Here isa
pentagonal faces is represented in the graph.

o cdees of o e Lo
he edges of the dodecahedron which visited every city exactly once and returned

oraph whi o .
graph which represents the dodecahedron. Here each of the 20 vertices,

30 edges and 12

R de Janeiro

ondon
Londox Preora

Baghdad
Wellington

Nairodi

Canberra Washingten RC

Fig 5.2 Dodecahedron

alculus, an algebraic structure based on roots

Hamilton solved this problem using the icosian ¢
o invented by Hamilton). This solution

of unity with many similarities to the quaternions (als

does not generalize to arbitrary graphs.

vertices (and 7 edges) is Hamiltonian. Now, givenany

(obtained by adding in new €
s because any Hamiltonian cy

Clearly, the n-cycle Cn with n distinct
Hamiltonian graph G, the supergraph G

cent vertices of G) is also Hamiltonian. This 1
or instance, Kn is supergra

dges between non adja-
cle inG is also a
Hamiltonian cycle of G'. F ph of an n-cycle and so K is Hamilto-
nian.

26
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.o o graph with z vertices. Clearly, G is
Let U bea g carly, G is a subgraph of the ;
oy . oVET. CARET O z > complete pre 3| e
_«puct step by step supergraphs . ¢ praph K, Fr -
we constru | p supergraphs of ¢ to get K by adding ph Ky, From @,
’ N : ‘ g an edge af each s
(WO vertices that are not already adjacent (fig. 5.3) an edge at cach step between

Fig 5.3 supergraphs of G to get K,

. let us start wi ar 7 which i iltoni
Now. le ith a graph G which is not Hamiltonian. Since the final outcome of

the procedure is the Hamiltonian graph Kj,, we change from a non-Hamiltonian graph toa
Hamiltonian graph at some stage of the procedure. For example, the non-Hamiltonian graph
G, above is followed by the Hamiltonian graph G. Since supergraphs of e s
are Hamiltoniar

reraphs are Hamiltonian.

1. once a Hamiltonian graph is reached in the procedure, all the subsequent su-

pe
ng we'll need to be able to do with Hamiltonian graphs is decide whether

The main thi
1gh the definition of Hamiltonian graph is very sim-

iven graph is Hamiltonian or not. Althot
tly. While Euler's

ph, it turns out the two concepts behave very differen
a graph Eulerian, there is

ag
ilar to that of Eulerian gra

Theorem gave us a Very easy criterion to check t
aph is Hamiltonian or not. It turns out t
eaning that if we could solve that probl

fficiently as well.

o see whether or not
hat deciding whether or

no such criterion to see if a gr
em effi-

not a graph is Hamiltonian is NP-complete, m

ciently. then you could solve a host of other difficult problems ¢

vhether a graph is Hamiltonian or not. But it's only in

[t may seem unfair, then, to ask v
t -- as the number of vertices get

roblem is extremely difficul

ickly. Forany given graph with a Jow number

a very theoretical way that the p
blem gets harder and harderqu

sibilitie.

very large, the pro

of vertices, there aren't that many pos

27
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=

‘1 Hamiltonian Path

, ConneCmd graph. if there is a walk that passes each and every vertex of a graph only once
3 Yy veru Di a grapn only once,

sV oIk will be known as the Hamiltonian path. In this walk, the edges should not be repeated
( S =2 JUNU R e ISP aiICU.

Fig 5.4 Example of Hamilton Path

[n the above graph. we can see that when we start from A. then we can go to B. C. D. and then

E. So this is the path that contains all the vertices (A. B. C. D, and E) only once, and there is

no repeating edge. That' path. which is

s why we can say that this graph has a Hamiltonian
described as follows:

Hamiltonian path = ABCDE

5.2 Hamiltonian Circuit
a walk that passes each and every vertex of the graph only once

In a connected graph, if there is
arting vertex. then this type of walk will be known

and after completing the walk, return to the st
as a Hamiltonian circuit. For the Hamiltonian circuit. there must be no repeated edges. We can

also be called Hamiltonian circuit as the Hamiltonian cycle.

28
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Fig 5.5 Example of Hamilton Circuit

e graph contains the Hamiltonian circuit if there is a path that starts and ends at the

The abov
same Vertex. So when we start from the A, then we can go to B, C, E, D, and then A. So this is

{he path that contains all the vertices (A, B. C, D, and E) only once, except the starting vertex,

. o . 1 > . o & i N
and there 1S N0 repeating edge. That's why we can say that this graph has a Hamiltonian circuit.

Hamiltonian Circuit = ABCEDA

5.3 Hamiltonian Graph

The graph will be known as a Hamiltonian graph If there exists a closed walk in the connected
graph that visits each and every vertex of the graph exactly once (except starting vertex) with-
out repeating the edges,

OR
Any connected graph that contains a Hamiltonian circuit is called as a Hamiltonian Graph.

The following graph is an example of a Hamiltonian graph.

Example of Hamiltonian Graph

Fig 5.6
29
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s a closed walk ABCDEFA.

aph contain

his E°
ough every vertex of the graph exactly o
¢ nce CXCCpl star y
starting vertex.

alk, the edges are not repeating

Tl refore itisa Hamiltonian graph.
The .

NOTE

[f we remove one of the edges of Hamiltonian path, then it wi
, then it will be converted i
rted into any

Hmniltonian circuit.

[fany graph has a Hamiltonian circuit, then it will also have the Hamiltonian th. But
< an path. bu

the vice versa in this case will not be possible.

A graph can contain more than one Hamiltonian path and Hamiltonian circuit
C .

ever. a non-Hamiltonian graph can have a Hamiltonian path, that is, Hamiltonian paths

s be used to form Hamiltonian cycle
tonian cycle; Ga has the Hamiltonian path vivavsvs. but has no Ham-

How!
cannot alway
path, and s0 N0 Hamil
ycle, while G3 has the Hamiltonian cycle vivavavavi.

s. For example, in Fig 5.7 G has no Hamilto-

nian

jltonian €

: 'y | vy
A
/
iiy) V| \2./4.”
G, G,
Fig 5.7

5.4 Properties of Hamiltonian Graph

ted to a Hamiltonian path by removing one of its

¢ Any Hamiltonian cycle can be conver
dto Hamiltonian ¢

an be extende ycle only if its end-

edges, but a Hamiltonian path ¢

points are adjacent.
30

Scanned witﬁ CamScanner



All Hamiltonian graphs are biconnecteq but

a bj CART
] @ Diconnected graph need not be Hamilto-
[ pian.

Sulerian graph G (a connec ‘aph
« An Eulerian graph G (a connecteq graph in whic|, every vertey | I
-Tlex has even degree) nec-
alk passing through ¢

amiltonian cycle

essarily has an Euler tour, a closed w
ach edge of ¢; exactly once.

Tt . ; N the line graph L(G), s0 the line graph
of every Eulerian graph is | lamiltonian. Line gr.

This tour corresponds to a I

aphs may have other Hamiltonian cycles

that do not correspond to Euler tours, ang i particular the fine graph L(G) of every
AL
Hamiltonian graph G is itself Hamiltonia, regardless of whether the graph (i is Eu
56 > g1 J 1S BEu=
lerian.

o A tournament (with more than two vertices)

1s Hamiltonian if and only if it is strongly
connected.

o The number of different Hamiltonian cycles in a complete undirected graph on n verti-

. (n-1)! 3 e
GeSHiSie—== and in a complete directed graph on n vertices is (n—=1)!. These counts

assume that cycles that are the same apart from their starting point are not counted

separately.

Definition: A simple graph G is called maximal non-Hamiltonian if it is not Hamiltonian and the
addition of an edge between any two non-adjacent vertices of it forms a Hamiltonian graph.

For example Figure below shows a maximal non-Hamiltonian graph.

Fig 5.8 maximal non-Hamiltonian

It follows from the above procedure that any non-Hamiltonian graph with n-vertices is a sub-

graph of a maximal non-Hamiltonian graph with n vertices.
wing sufficient conditions due to Dirac.

The above procedure is used to prove the follo

31
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4

iy (1952)] = If G is a simple graph having at least three vertices and

pheore™ 5.1 . A A :
) & Ak for every vertex v of G. then G is a Hamiltonian graph.
degt’” ~
. Assume that the result is not true. Then for some value m > 3. there is a non- Hamil-
proo™ 5 . ' ‘
. graph H in which deg(v) = m/2. for every vertex of .
1omﬂl =

: Janing super graph K (i.c.. with the same vertex set) of H, deg(v) = m/2 for every

cince 1Y proper supergraph of this form is obtained by adding more edges.
jnce 4t
aximal non-Hamiltonian graph G with n1 vertices and deg(v) = m/2 for

jsam
e obtain a contradiction.

Thus there
every v inG- Using this G. W
Clearlys G is not complete as Ko is Hamiltonian.
Therefore there are non-adjacent vertices wand v in G.
Let G+uv be the supergraph of G by adding an edge between u and
Since G 1s maximal non-Hamiltonian, G + uv is Hamiltonian.

Also, if C 15 @ Hamiltonian cycle of G + uv, then C contains the edge uv, since otherwise C is

2 Hamiltonian cycle of G. which is not possible.
Let this Hamiltonian cycle C be U=V, V2, oo Y = Vs U

Now, let S={w EC: there is an edge from u tO Vi+1 in G} and

T={v € C: there is an edge from v 1OV inG}.
Then vy €. since otherwise there is an edge from v 10 Vir = v, that is a loop, which is impos-

sible.
Also v, €S, (taking vire1 as V1), since otherwise we again get loop from 2 t0 vi = -

Therefore, v, € SUT (Fig. below):
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| ] and [SUT]| be the number of elements iy Y, 08
q «
uﬂ'

< . Also. for every edge incident with 1, there corresponds one vertex v

and Sur respectively,

suTl 1in S.

S0

= deg(u). Similarly, [T|= deg(v).

Thel-ef()l'e \ |S|
iy s @ vertex belonging to both S and 7', there is an edge ¢

Nows B8 ko vk

odge f joining ! e

) = y v ) y
> =\ ‘/;d-l,\lﬁ-z....,]/.\k.’ Viely oo, ¥V
This implies that C & ' l H

Joining u to v, and an

+ Vi isa Hamiltonian cycle in G,
isa contradiction as G is non-Hamiltonian,
||

whicl

This shows that there is no vertex v in SN T, so that SN T =,
11S S

Tus|SUTI= IS ITI=IS N T gives|S| +|T|=|Su T,

o that deg(u) + deg(v) <n.
Thisis a contradiction, because deg(u) = m/2 for all u in G, and so deg(u) + deg(v) > m/2 +

2 giving deg(u) +deg(v)=m. Hence complete the proof.

Theorem 5.2 (Ore) Let G be a graph with » vertices and let i and v be non-adjacent vertices
in G such that deg(u)+deg(v) = n. Let G +uv denote the super graph of G obtained by joining

uand v by an edge. Then G is Hamiltonian if and only if G+ uv is Hamiltonian.

Proof: Let G be a graph with  vertices and suppose « and v are non-adjacent vertices in G
such that deg(u1) + deg(v) > n.

Let G +uv be the super graph of G obtained by adding the edge ur.
Let G be Hamiltonian. Then obviously G + uv is Hamiltonian.
Conversely, et G + uv be Hamiltonian.

Wehave to show that G is Hamiltonian,

Then, if G js not Hamitonian as in Theorem Dirac, we get inequality deg(u) + deg(v) <n,

Which contradicts the hypothesis that deg(u) + deg(v) > n. Hence G must be Hamiltonian.
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tGbea graph Wiﬂl n V'ef}iCCS. H'ithe::

niti"": : deg(l“) ; d"g(_‘ % ;’\7/;:%':@;”“‘:':‘(‘! l\w}i) G 5 the Sliper graph (678

D"rf uch tha e tWO non-adjacer gk 2and v, "G _Sllch‘thm gl "4,

in(/-“i{thcrc al an edge to form supergraph G, FZontmue N thig way., fecursively jolnihg

N and ¥ i t vertices whose degree sum ig at least until no sy, pair rem
S ained is called the closiure

are twg non‘ﬂdi

acent vertices 1y and y
' |
an edge (q form

. bl .
jolﬂ 4 -non—adJ

14ins. The
: i St of G ang 1S denoteq by o((y),
il o1 ;
Rﬂq apergraP ‘oure below illustrates the closure operation
fint mple in Figure
- ¢Xa
fhe

Fig 5.9 Closure

mple that there are different choices of pairs of non-adjacent vertices
in this exa .
. deg(v) Z n. Therefore the closure procedure can be carried out inseveral
i +de, Zn.
jith deg(u) +deg
and v W1

a i f lt.

' b iru, v jacent
in Figure 3.16, n =7 and deg(u)+deg(v) <7, for any pair u, \ of adjace
raph shown In .16,
In the graph s

vertices. Therefore, ¢(G)=G.

¢(G)is Hamiltonian

Proof: et ¢(G) be the closure of the graph G.

Since ¢(G) is supergraph of G. |
i iltonian.

Teretore, if G is Hamiltonian, then ¢(G) is also Hami

Conversely, let ¢(G) be Hamiltonian. v
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E

. G i1, Gk =c(G) be tlie sequencent _
YAt G -+ Ok G =(G) be the sequenceo graphs obtained by performing the clo-

I p,-occdllrt‘ on G.
su

e {(G)=Gx s obtained from G-y by setting Gy = (5, |+ v, where 1, v is a pair of non
>1_ Lot vertices in Gi-1 with d(i)+d(v) > n.
adjace

ofore it follows that G- is Hamiltonian.
ther

ilarly Gi2. SO Gi=3..... G and thus G is Hamiltonian,
Sir J

Theorem 5.4 (Nash-Williams): Every K-regular graph on 2k + | vertices is Hamiltonian.

proof: Let G bea k-regular graph on 2k + | vertices,
roof:

Add anew vertex w and join it byan edge to each vertex of G,

The resulting graph H on 2k +2 vertices has § =k + 1.

Thus H is Hamiltonian.
Removing 1 from H. we get a Hamiltonian path, say vov| ...vy.
Assume that G is not Hamiltonian. so that
(a) if vor: € E, then vi—1var EE

(b) if vov: EE. then vi—1vax € E. since d(vo) = d(vax) =k.
The following cases arise.

Case (i) vo i8 adjacent to vy, v2. ..., W%, and vy is adjacent to vk, Vi1 . V2l Then
there is an i with 1 </ <k such that v; is not adjacent to some v, for 0 <j < k(j/=1i).
But deg(v) = k. So v, is adjacent to v, for some j with ket i< 2l

Then the cycle C given by Vivi-1...VoVii1...Vj-1VakVa Vjisa Hamiltonian cycle of G (Fig below).

\\ ‘\\
\ 1
\/
Y
P
35
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C as s ..om and et v b the vrten
nnot be adjacent 1o two consecutive vertices on ¢* and
“ %7‘?"?' vertex on C. say i s, ... . TR

nma,m«wnmmmlmumeyehc'am _ il
uy must be adiacent to 11 s, ... k-, But then uy is adjacent to o, uy, ... ok IM=

g “,,,zm.ms is a contradiction.

Hence G is Hamiltonian.
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L lesman Problem
gt

o of travelling salesman problem is not clear. A handbook for travelling sales-
1432 mentions the problem and includes example tours through Germany and Swit-

o o contains 10 mathematical treatment, The problem was first formulated in 1930 and
: most imensively studied problems in opfimization. The TSP was mathematically

o o o centuary by the Irish mathematician William Rowan Hamilton and by British
U‘M ' Thomas Kirkman, Hamilton's icosian game was a recreational puzze based on

m

o Jmiltonian cycle. The general form of the TSP appears 10 have been first studied by
[ - mduﬂ’nglhc 1930,
This problem is related to Hamiltonian cycle , Salesman is required tovisit number

s during the trip with covering least possible total distance. In which we use given cities
of -y fferent road between cities as a edges and distance between cities as 2 weight of
; odge betvieen vertices. For this equivalent concept in graph theory is require to find 2

milionian cycle of least possible total weight in a weighed graph,

A salesman travels from city to city with in his alloted territory in such 2 manner that
b cowers all the cities once and only once during his tour and come back to his base city. The
yavelling salesman problem can be solved as an assignment problem with following re-
s The salesman starts his journey from his base city and come back to his base city after
visiting all the cities once and only once during tour alloted to him.
¢ The objectives of salesman is to cover minimum distance,
s The salesman can not travel from a city fo same city. Although the cost of travelling

city to same city zero, but this assignment is prohibited.

37
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l.n(ion

jilust

9
Fig. 5.10 Graph represented 5 cities with their distance

Let's SUPOSE A.B.C.D & E are 5 cities and there are many routes from one city to other city.
Suppose 10 find shortest route from city A to A crossing all remaining cities.

Given data in the graph represented as.

Now let’s give the assignment in above table such that cach row or column has only one as-

signment.

« First we avoid column *A’ because in this column give the assignment in the last. Now
g0 to the 1¥ row ‘A" in which there are four elements 2.8,4 and 6 out of which 2 is a

signment 1o +2°. (Remember that assignment

smallest number. Therefore we give the as
completed column is avoid for the next assignment) - Therefore we av oid column ‘B’.

minimum number is in B.

—
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ow 1M we o 10 the row ‘B’ In which there are three eloments 7,3 and 6 out of
JHich ) is o smallest number. Therefore we give the assignment 1 ', Now dso we
wold column ‘D', minimum number is in 1),

exl We o 10 the row ‘D", In which there are two elements 9 and 5 out of which 5 is
3 smallest pumber. Therefore we give the assignmentio 5’ we avoid column ‘£, min-

r' o pumber 8 0 F-

Now next we B0 10 the row ‘L', In which only one element % is remaining, therefore we
'

giv
L , Lastly
|
|

o the pssignment 1o ‘W% in column C,

we po 1o the row 'C" and give the assignment 1o ‘%’ in the 1 Iy avoided colurmn.

ay We obtain the Hamiltonian cycle is A-B-D-E-C-A with minimum weight =
s Wi

fn th
2434544‘4 #=20
s cquivalent {0 find shortest path from city A o A crossing all citics once is A-B-D-EAL-
: :ith ghortest distance is 20 km,
C D 3
4 4 0
| 7 5
T‘ 0 9 4
0 0 r
i
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B

plic ations Travelling Salesman Problem

4-1
o Sinv

arious fields. §
of TSP are: s fields. Some of

rave”i"g’ 2

The plications

. ml-noﬂ ap
he vty ? 4551
. tation: The TSP is use e
ansporta used to optimize the routing of delivery truck

vice technici TBRE ry trucks. sales
srvice technicians. / e

service t ians. By finding the shortest route (&t Visted mi
at visits all necessary

opI€ mimi avel ti
rep TSP can help minimize travel time and reduce transport

oS, ation costs,

Jo¢

. 1n the field of electronics. TSP i imi
gn: In s used to optimize the routi
4 outing of electrical

"it dc‘i ~1e! l o
(:(i ("l'Clli l 07 ld. \Vhlch |S aC1 it‘lC(ll Step lll tl € de i lect rcuits
1 . Sl&.n ()t t.l E i i 1

Cir .
qignals ina print
quencing’ In bioinformatics, TSP is used to find the shortest path to seq DN

¢ S uence a "

DNA s¢ X . s
DNA sequencing involves finding the order of nucleotides in a DNA molecul
molecule,

molecule:
ich can pe modeled as @ TSP.
Wi

Nem’ol‘k design: TSP is used to optimize the design of communication networks, such as the

Jacer ent of cell towers, routing of fiber-optic cables, and design of wireless mesh network
rks.

Robofics: TSP can be applied in robotics to optimize the path planning of robots to visit a set

of locations in the most efficient manner.

These are just a few examples of the many applications of TSP. The problem is widely studied

and has numerous practical applications in various fields.

40

Scanned with CamScanner



(‘oml’*‘ris"" Between Eulerian and Hamiltonian Graph
b

rﬁ;;}]";ninn Graph Eulerian Craph

i
Covers all the vertices of a graph | Travers all the edges of a graph |
actly once. exactly once. T
CAE ’ |
-'“’c’nn/.;onmin same edge mutiple | It can contain same vertices ;
vimes. mutiple times &
e T » T T E—————
Every pair of distinct non-adja- The graph should have at most
_ent vertex the addition of the | two odd degree vertices.
.

cum of their degrees and the ‘
jength of the shortest path for ‘
oreater than or equal

that pair 1s
to the number of vertices.

No nodes may be omitted. No edges may be omitted.

P, 5 10 ; r oV o)
The vertices do not need to be of | All vertices have to be even de-

1
=
|

even degree. BLECs

|
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chapter ©

pP“ cations of Eulerian and Hamiltonian Graph

; Hamiltonian graph is one of the topic :
pulerian and p topic pf graph theory which has wide applica-

tion in other area of mathematics as well as in other branches of science. It also plays signif-
fcant role in our everyday life. Application of Eulerian and Hamiltonian graph in our day to

day jife and various fields of science.
ay

App]ications of Eulerian and Hamiltonian graph in Everyday Life

6.1 GPSor Google Maps

GPS or Google Maps are to find a shortest route from one destination to another. The destina-
ons are Vertices and their connections are Edges consisting distance. The optimal route is

determined by the software. Schools / Colleges are also using this technique to pick up students
from their stop to school. Each stop is a vertex and the route is an edge. A Hamiltonian path

represents the efficiency of including very vertex in the route.

6.2 To clear road blockage

When roads of a city are blocked due to ice.Planning is needed to put salt on the roads. Then
Euler paths or circuits are used to traverse the streets in the most efficient way.

Application of Eulerian and Hamiltonian in Biology
6.3 DNA fragment assembly

DNA (deoxyribonucleic acid) is found in every living organism and is a storage medium for

genetic information. A DNA strand is composed of bases which are denoted by A (adenine), &

(cytosine), G (Guanine) and T (thymine). The familiar DNA double helix arises by the bondage

of two separate strands with the Watson-Crick complementarity (A and T are complementary:

Cand G are complementary) leading to the formation of such double strands.

42
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and fragment assembly is the problem of reconstructing full strands of DNA

.cqucncing - o I
A : pleos? of data recorded. It is of interest to note that ideas from graph theory,
) the . ’
h“'“:d ; |erian circuits have been used in a recently proposed approach to the problem of
. 11y Fulerie
YCCh ‘
* A fmgmcm nssunbly_
HNA I
v P ic Situ"]ti"n
4 Usage in Pandem
; jon of Buleriat and Hamiltonian graph in Vaccination
Jicatlo o . ‘ ‘ l '
: TSR and effective way of protecting people from harmful diseases
Vnccinatlon is a

into contact with us. Vaccination is done in the hospitals and in covid-19 vaccina-
: 5

e il con
pefor

, two doses is & o
d the total hospitals of a particular city into 5 parts and apply EULERIAN and HAM-
jded the 17

iven to a single person i.c. first dose and second dose after 84 days. If we apply
iol
he div _
LTONIAN graph n €
| tal “W" hospitals in particular city, as shown in fig 6.1
Lave toté

ach of it, then we can easily increase the speed of vaccination. Suppose

wel

¢ L I )
N

Fig 6.1. Categorization of the hospitals w.r.to age limit

Then we divide those W hospitals in 5 parts (on the basis that the route/path of thehospitals are
different)- ‘A’ ’B’,’C’,’D’,’E".

In A" Type hospitals (fig 6.2), first dose of vaccine will be provided to 45+ candidates.
The candidates are requested to follow Eulerian and Hamiltonian path in order to receive first

dose. As shown in the fig 6.2
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RS

dose

-

Regist e
'u‘)" ' \}\«— R

Fig 6.2 Vaccination process for Type A hospitals

As W able to se€ that every point or vertex is covered exactly once and every edge th
As ; ! y edge or pa
point t0 another is also covered exactly once hence the path followed is Euleri

S cuierian

from one
and Hamiltonian
Similarly, in *B" type hospitals (fig 6.3), first dose of vaccine will be provided

path and thus the graph formed is by applying the Eulerian and Hamilto

pian gmph'
0 18+ can didates. The candidates are requested to follow Eulerian and Hamiltonian path in

order 0 receive first dose.

Candidate RE{JKS’. 1
entry 3red ration T

Fig 63 Vaccination process for Type B hospitals

Every point or Vertex is used exactly once, and every edge or path is also used once hence
Eulerian and Hamiltonian path is followed by every candidate and thus the graph so formed

is Eulerian and Hamiltonian graph. In *C" type hospitals, seconddose of vaccine will be pro-

vided and the candidate who visit option Ist type or option 2nd type hospitals. will visit here

after 84 days of their first dose. The candidates here also follow Eulerian and Hamiltonian

path in order to receive the second dose (fig 6.4). Thus, the graph so formed is Eulerian and

Hamiltonian graph.

Candidat
Candidates
eentry i rej:en!'eo ™
of 1"'dose o
dose
——

Fig 6.4. Vaccination process for Type C hospitals

1e candidate visit to this hospital

D type hospitals, covid-19 +ive patients are treated. Tl
vid-19 test should be

may or may not visit to ‘A’ or ‘B’ type hospital. In ‘E’ type hospitals, co

44
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1a1c whose report wil iti
e candida rep ill be positive should refer 1o ‘1’ type hospital and al
and also

dvisc 10
caph in prcvcming infection from spreading

gon
gould *

jronia”
[n above tex,
ndidate into any hospitals for vaccination of
L ” cination of Ist and 2nd do [
se, for covid-19

and for covid-19 test. By disconnecting the path (and providing Eu- leri d
Su- lerian an

h for specific need) of candidate for vaccination from the candidate f
idate Jor

o T l Iam'

we have divided ‘W’ :
ed the total “W’ hospitals into 4 types i ¢, we stop visitin

catmen!

it 419 reatment not onlyhelp people for easily vaccinated but also prevent people fi

x rom
ing D contact with infected person. i
c0

lying the Fulerian and Hamiltonian path in cach type hospitals, also secure/ prevent
» : 7

By PP

pcoplc from coming in contact with cach other.

ondition pefore using the Eulerian and Hamiltonian path

Suppose the person

at in the vaccination area. The

C
«N” feel ill and come for covid-19 test, but due to no specific path.

rethe person “N” met another person to ask for the

he we
id-19 test area. When he was tested positive. All persons who came in his contact also

cov
(ested positive and this process remain continue, as depicted in fig 6.5.

’-?- As
Figure 6.5. Spreading of infection
nfect others, as depicted in fig 6.5 - This

The above diagram shows how single infected person 1
spreading of infection can be prevented if we provide the s 19 test. The
na-

y simplifying disconnecting some

parate place for covid-

best way to stop spreading of covid-19 in hospitals, vaccina-tion center and tested area is to

di : i
isconnect their path from each other. This can be achieved b

paths and by follow the Eulerian and Hamiltonian path in each hosp ital
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vacein dune s o

simplification of disconnecting paths to follow the fyferja, and Hamiltonjap mn m‘
e
h _mnﬂm”“ after using the Eulerian and Hamiltoniay path

ot (he person “N™ feel il and come for covid. |9 test, as it is specified that testing fér

covide19 18 in hospital of type “D™ The person “N" will visit there and no one efse get infected
from him in cas¢ he will tested positive, By disconnecting five paths from each other,
 sily safe millions of live. In other words, we can say by dividing the
§ gther vertex and by dividing single edge into five different edges,

we can
single root vertex into

We can prevent infection
B spreading. Each type of hospital follows the Eulerian and Hamiltonian path i.e. no person

is allowed to repeat same room again and to skip any room or process (no vertex repeat itself

and every vertex visit once, every edge is in path exactly once). Now, to understand Eulerian
and Ham- iltonian path in cach type of hospitals.

B [y S —. AR Bt et
Altype Bitype Ctype O type F type
e 1" 1Mo ™ cond:19 vida19
dosw do w L dow infected tested |
s
Candidate Candidate | Candidate | Cantidate | Candxlate M
entry | | entry entry | entry | eotry !

‘ —— e r % 1
"“"";'rl [ fegstration [ 1* dose entry | i A""\‘:""f’” 1 l : et

r - A b b 4 fhdah -
[ S
™o | | 1" dose i Hospitalued 1 [Tewes
| | vatone fhome 2
vacLine ’ ] | bt )
- cocmi i 1 ] walation |

Candhdate go Candigate o (‘.-\:‘uu :o
0 eory gate
to entry gate :"‘ niry l": l‘o ety gate i
e or medic o
= " confirmat nformation

it
e
il
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qbove graph (g 6.7) we can understand that how with the help of Eulerian

.. we can prevent infection from spreading,.

.« and Eulerian graphs
esigns
00r D
: pal 1 nteresting floor designs, known as “kolam™, are drawn as decorations in the floor

interesting shapes, duri i ; . , _
¢ sizes and in intere ting shapes, during festivals and weddings, with the drawing

arg
. flour or rice P

aste especially in South India.
 in drawing @ kolam. first a suitable arrangement of dots is made and then lines going

d {s are e dr
pes of kolam, is known as ‘kambi kolam’ (the Tamil word kambi meaning wire).

erﬂl : 4 Al : o
ge? awn. An example kolam is shown in Fig 6.8(a) where the dots are ignored

» kolam is made of one or more of such ‘kambi’s . The kolam in Fig 6.8(a) is of

jn (his type: the .
and 18 made of a single ‘kambi® whereas the kolam in Fig 6.8(c) is made of three

s OYPC

‘l{ambi.S'

Fig 6.8(a): Single Fig 6.8(b) graph of Fig 6.8(c) a kolam
Kambi kolam kolam in fig 6.8(a) made of three kambis

A kolam drawing can be treated as a special kind of a graph with the crossings considered as

vertices and the parts of the kambi between vertices treated as edges. The only restriction is

that unlike in a graph, these edges can not be freely drawn as there is a specific way of drawing

the kolam. The single kambi kolam will then be an Eulerian graph with the drawing starting

and ending in the same vertex and passing through every edge of the graph oniy once. In Fig
68(b), the kambi kolam of is Fig 6.8(a) as a graph with vertices (indicated by small thick dots)
and edges and this graph is Eulerian asevery vertex is of degree 4. Note that the graph of kambi

kolam (with more than one kambi) in Fig 6.8(c) will also be Eulerian but the drawing of the

47
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vay it will be done by the kolam practitioners will not be giving rise to the Eu-
¢ Wi
H’“'"” . onthe other hand in the case of single kambi kolam it i3 of interest to note that
rewih PP : - . 4 By
of the kolam will give a tracing of an Eulerian circuit in the corresponding graph
ing

ane Route Problem

4 businessman have to visit in four cities of Bangladesh for his business purs

o6 Airp!

Suppose:
air routes because of short time arrival. He also has an assignment for making

He Prci’crs
ices of the six air service providers in those regions. Air services in these

0sC:
{serv

jistol rating ©
Nt

! o a form of following routes in the graph below:
Ve ©

= Oylhet
/ |
C

Figure 9. Graph Routing Problem

rcglpn&' ha

Cox’s Bazar

Is it possible for the businessman to start from Dhaka and travelling the four cities with the six

sirways and then return back to Dhaka in purpose of business and assignment?

Solution

Here. there are four places to travel or four vertices. Now we will check for the vertices that
the Euler theorem is satisfied or not.

For Dhaka, Degree is 4, which is even.

For Sylhet. Degree is 2, which is even.

For Barisal, Degree is 2, which is even.

For Cox’ ; o
or Cox’s Bazar, Degree is 2. which is even.
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) the four vertices has even degree. So by Euley theorem i
. ¥ 1

¥ the businessman to start from Dhak
hle for
\Q_\‘b

Aa)ys and th
)

atistied and henee it is
& and travelling the fou Cities with the six
on return back to Dhaka in purpose of business and assignment
2

rganizing Transpiration Networks
-0 ]
[\

M

Fig 6.10(a) The paths that link the stations

We can use an Eulerian graph for organizing transpiration networks that can use
PJr-ticuIar paths just only one time. Forexample, as in Figure A, a postal carrier wants to
sse bus stations (vertices) to traverse each street (edges) exactly once. Besides. he has (o
start and end his route at the same station. To let him do that, the araph must be an
Euler circuit. We start checking the degrees of the vertices one by one. As soon as we
caught an odd vertex. we know that the graph will be not an Euler cireuit. The araph
(Figure A) has eight vertices A, B, C, F, N, M, L,and 1: their degrees are odds. So it
is not an Euler circuit. Let’s try to make the graph an Eulerian circuit. There are actually
many several Euler circuits he could have taken. One of them could be by deleting four
edges Al, BC, FN, and LM (Figure A). Then.all vertices will have even degrees, Now,
the mail carrier can traverses each street exactly once, and he can start and end from one

station,
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